Optimal guidance and estimation of a 1D diffusion process by a team of mobile sensors

Sheng Cheng

Department of Electrical and Computer Engineering

Derek A. Paley

Department of Aerospace Engineering and Institute for Systems Research

University of Maryland

59th Conference on Decision and Control

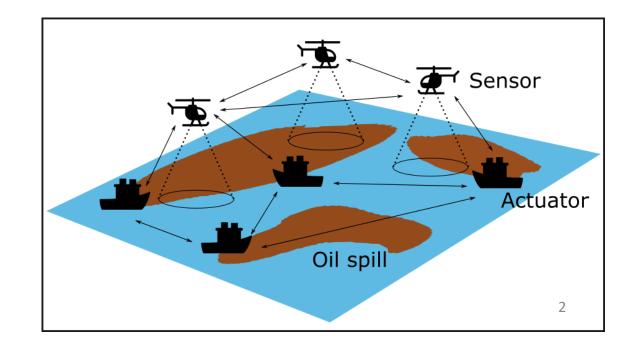
December 14, 2020

Motivation

- Autonomous vehicles: monitoring and control of large-scale spatiotemporal processes.
- Modelling of the process: partial differential equations
 - e.g., advection-diffusion

Motivation

- Autonomous vehicles: monitoring and control of large-scale spatiotemporal processes.
- Modelling of the process: partial differential equations
 - e.g., advection-diffusion



Sensor type		Representative work	Approach
		[Smyshlyaev and Krstic, 2005]	Backstepping
	Boundary	[Wang et al., 2017]	Luenberger
		[Moura and Fathy, 2017]	LQE
Stationary		[Bensoussan, 1972]	Minimum trace
	In-domain	[Demetriou and Borggaard, 2004]	Enhanced observability
		[Demetriou, 2017]	Centroidal Voronoi tessellation
		[Veldman et al., 2020]	Geometric rules
		[Demetriou and Hussein, 2009]	Lyapunov-based methods
		[Demetriou et al, 2011]	Lyapunov-based methods
		[Demetriou, 2018]	Lyapunov-based methods
Mobile		[Demetriou, 2014]	Gradient-based methods
		[Carotenuto et al., 1987]	Optimization
		[Demetriou, 2016]	Optimization

Sensor type		Representative work	Approach
		[Smyshlyaev and Krstic, 2005]	Backstepping
	Boundary	[Wang et al., 2017]	Luenberger
		[Moura and Fathy, 2017]	LQE
Stationary		[Bensoussan, 1972]	Minimum trace
	In-domain	[Demetriou and Borggaard, 2004]	Enhanced observability
		[Demetriou, 2017]	Centroidal Voronoi tessellation
		[Veldman et al., 2020]	Geometric rules
		[Demetriou and Hussein, 2009]	Lyapunov-based methods
		[Demetriou et al, 2011]	Lyapunov-based methods
		[Demetriou, 2018]	Lyapunov-based methods
Mobile		[Demetriou, 2014]	Gradient-based methods
		[Carotenuto et al., 1987]	Optimization
		[Demetriou, 2016]	Optimization

Sensor type		Representative work	Approach
		[Smyshlyaev and Krstic, 2005]	Backstepping
	Boundary	[Wang et al., 2017]	Luenberger
		[Moura and Fathy, 2017]	LQE
Stationary		[Bensoussan, 1972]	Minimum trace
	In-domain	[Demetriou and Borggaard, 2004]	Enhanced observability
		[Demetriou, 2017]	Centroidal Voronoi tessellation
		[Veldman et al., 2020]	Geometric rules
		[Demetriou and Hussein, 2009]	Lyapunov-based methods
		[Demetriou et al, 2011]	Lyapunov-based methods
		[Demetriou, 2018]	Lyapunov-based methods
Mobile		[Demetriou, 2014]	Gradient-based methods
		[Carotenuto et al., 1987]	Optimization
		[Demetriou, 2016]	Optimization

Sensor type		Representative work	Approach
		[Smyshlyaev and Krstic, 2005]	Backstepping
E	Boundary	[Wang et al., 2017]	Luenberger
		[Moura and Fathy, 2017]	LQE

Our contributions to date:

- 1. Formulate an optimization problem: uncertainty + mobility penalty
- 2. Establish the conditions of the existence of a solution to the proposed problem
- 3. Analyze the sensor noise and mobility penalty's impact on the performance of the proposed guidance

[Carotenuto et al., 1987]

Optimization

[Demetriou, 2016]

Optimization

Sensor dynamics and diffusion process

• Assume linear and first-order dynamics of the mobile sensors

$$\dot{\zeta}_i(t) = a_i \zeta_i(t) + b_i p_i(t)$$

f position guidance

Sensor dynamics and diffusion process

Introduction

• Assume linear and first-order dynamics of the mobile sensors

$$\dot{\zeta}_i(t) = a_i \zeta_i(t) + b_i p_i(t)$$
f
position
guidance

Formulation and solution method

• Consider a 1D diffusion equation with unknown initial condition and known boundary condition:

$$\frac{\partial z(x,t)}{\partial t} = a \frac{\partial^2 z(x,t)}{\partial x^2} + D(x,t)w(t)$$

$$\uparrow$$
Gaussian
white noise

Sensor dynamics and diffusion process

Introduction

• Assume linear and first-order dynamics of the mobile sensors

$$\dot{\zeta}_i(t) = a_i \zeta_i(t) + b_i p_i(t)$$

$$\uparrow position guidance$$

• Consider a 1D diffusion equation with unknown initial condition and known boundary condition:

$$\frac{\partial z(x,t)}{\partial t} = a \frac{\partial^2 z(x,t)}{\partial x^2} + D(x,t)w(t)$$
Gaussian
white noise

• Observation equation:

$$y(t) = \int_{\Omega} \mathbb{B}_{\zeta(t),r}(x) z(x,t) dx + v(t)$$
Gaussian
white noise

Introduction

• Assume linear and first-order dynamics of the mobile sensors

$$\dot{\zeta}_i(t) = a_i \zeta_i(t) + b_i p_i(t)$$
f
position
guidance

Formulation and solution method

• Consider a 1D diffusion equation with unknown initial condition and known boundary condition:

$$\frac{\partial z(x,t)}{\partial t} = a \frac{\partial^2 z(x,t)}{\partial x^2} + D(x,t)w(t)$$

Gaussian
white noise

$$y(t) = \int_{\Omega} \mathbb{B}_{\zeta(t),r}(x) z(x,t) dx + v(t)$$

Gaussian

$$\frac{1}{2r}$$

white noise

Conference on Decision and Control

Sheng Cheng and Derek A. Paley

Observation

Infinite-dimensional system: Kalman filter

• Abstract linear system representation:

 $\begin{cases} \dot{\mathcal{Z}}(t) = \mathcal{A}\mathcal{Z}(t) + \mathcal{D}(t)w(t) \\ y(t) = \mathcal{C}^{\star}_{\zeta(t)}\mathcal{Z}(t) + v(t) \end{cases}$

Infinite-dimensional system: Kalman filter

• Abstract linear system representation:

$$\begin{cases} \dot{\mathcal{Z}}(t) = \mathcal{A}\mathcal{Z}(t) + \mathcal{D}(t)w(t) \\ y(t) = \mathcal{C}^{\star}_{\zeta(t)}\mathcal{Z}(t) + v(t) \end{cases}$$

• Kalman filter¹

$$\dot{\hat{\mathcal{Z}}}(t) = \mathcal{A}\hat{\mathcal{Z}}(t) + \mathcal{P}(t)\mathcal{C}_{\zeta(t)}R^{-1}(y(t) - \hat{y}(t))$$
$$\hat{\mathcal{Z}}(t_0) = \hat{\mathcal{Z}}_0,$$

Infinite-dimensional system: Kalman filter

• Abstract linear system representation:

$$\begin{cases} \dot{\mathcal{Z}}(t) = \mathcal{A}\mathcal{Z}(t) + \mathcal{D}(t)w(t) \\ y(t) = \mathcal{C}^{\star}_{\zeta(t)}\mathcal{Z}(t) + v(t) \end{cases}$$

• Kalman filter¹

covariance of measurement noise

$$\dot{\hat{\mathcal{Z}}}(t) = \mathcal{A}\hat{\mathcal{Z}}(t) + \mathcal{P}(t)\mathcal{C}_{\zeta(t)}\hat{R}^{-1}(y(t) - \hat{y}(t))$$
$$\hat{\mathcal{Z}}(t_0) = \hat{\mathcal{Z}}_0,$$

with operator-valued differential Riccati equation:

$$\dot{\mathcal{P}}(t) = \mathcal{A}\mathcal{P}(t) + \mathcal{P}(t)\mathcal{A}^{\star} + \mathcal{D}(t)Q\mathcal{D}^{\star}(t) - \mathcal{P}(t)\bar{\mathcal{C}}_{\zeta}\bar{\mathcal{C}}_{\zeta}^{\star}(t)\mathcal{P}(t)$$
incremental covariance
of state noise

¹S. Omatu and J. H. Seinfeld, Distributed parameter systems: theory and applications. Clarendon Press, 1989

Formulation and solution method

Summary

Conference on Decision and Control

Problem formulation

d Sumi

Problem formulation

• Uncertainty evaluated by the trace of the covariance operator¹

 $\operatorname{Tr}(\mathcal{P}(t)) = \mathbb{E}\left[\|\mathcal{Z}(t) - \hat{\mathcal{Z}}(t)\|_{\mathcal{H}}^{2}\right]$

Problem formulation

• Uncertainty evaluated by the trace of the covariance operator¹

$$\operatorname{Tr}(\mathcal{P}(t)) = \mathbb{E}\left[\|\mathcal{Z}(t) - \hat{\mathcal{Z}}(t)\|_{\mathcal{H}}^{2}\right]$$

• Find an optimal sensor guidance p to solve

Introduction

$$\begin{array}{ll} \underset{p(t)\in U}{\text{minimize}} & \int_{0}^{t_{f}} \operatorname{Tr}(\mathcal{P}(t)) + \frac{1}{2}p^{T}(t)\gamma p(t)dt \\ \text{subject to} & \dot{\zeta}(t) = a\zeta(t) + bp(t), \ \zeta(0) = \zeta_{0}, \end{array}$$
(P)

where γ weights the guidance effort.

Summary

Problem formulation

• Uncertainty evaluated by the trace of the covariance operator¹

 $\operatorname{Tr}(\mathcal{P}(t)) = \mathbb{E}\left[\|\mathcal{Z}(t) - \hat{\mathcal{Z}}(t)\|_{\mathcal{H}}^{2}\right]$

• Find an optimal sensor guidance p to solve

$$\begin{array}{ll} \underset{p(t)\in U}{\text{minimize}} & \int_{0}^{t_{f}} \operatorname{Tr}(\mathcal{P}(t)) + \frac{1}{2} p^{T}(t) \gamma p(t) \mathrm{d}t \\ \text{subject to} & \dot{\zeta}(t) = a\zeta(t) + bp(t), \ \zeta(0) = \zeta_{0}, \end{array}$$
(P)

where γ weights the guidance effort.

• Existence of a solution is established when the kernel of the observation function $\mathbb{B}_{\zeta(t),r}(x)$ is continuous w.r.t. sensor location².

 ¹M. Zhang and K. Morris, "Sensor choice for minimum error variance estimation," IEEE Trans. Automatic Control, vol. 63, no. 2, pp. 315–330, 2018.
 ²J. A. Burns and C. N. Rautenberg, "The infinite-dimensional optimal filtering problem with mobile and stationary sensor networks," Numerical Functional Analysis ⁶ and Optimization, vol. 36, no. 2, pp. 181–224, 2015.

Pontryagin's maximum principle

Consider the Hamiltonian:

$$H(t) = \operatorname{Tr}(\mathcal{P}(t)) + \frac{1}{2}p^{T}(t)\gamma p(t) + \lambda^{T}(t)(a\zeta(t) + bp(t))$$

Optimality conditions:

$$\dot{\zeta}^*(t) = a\zeta^*(t) + bp^*(t), \ \zeta^*(0) = \zeta_0,$$

$$\dot{\lambda}^*(t) = -a^T \lambda^*(t) - (\nabla_{\zeta^*} \operatorname{Tr}(\mathcal{P}(t)))^T, \ \lambda^*(t_f) = 0,$$

$$p^*(t) = -\gamma^{-1} b^T \lambda^*,$$

where

$$[\nabla_{\zeta} \operatorname{Tr}(\mathcal{P}(t))]_i = \frac{\partial \operatorname{Tr}(\mathcal{P}(t))}{\partial \zeta_i(t)}$$

Pontryagin's maximum principle

Consider the Hamiltonian:

$$H(t) = \operatorname{Tr}(\mathcal{P}(t)) + \frac{1}{2}p^{T}(t)\gamma p(t) + \lambda^{T}(t)(a\zeta(t) + bp(t))$$

Optimality conditions:

$$\dot{\zeta}^{*}(t) = a\zeta^{*}(t) + bp^{*}(t), \ \zeta^{*}(0) = \zeta_{0}, \dot{\lambda}^{*}(t) = -a^{T}\lambda^{*}(t) - (\nabla_{\zeta^{*}} \operatorname{Tr}(\mathcal{P}(t)))^{T}, \ \lambda^{*}(t_{f}) = 0, p^{*}(t) = -\gamma^{-1}b^{T}\lambda^{*},$$

where

$$[\nabla_{\zeta} \operatorname{Tr}(\mathcal{P}(t))]_i = \frac{\partial \operatorname{Tr}(\mathcal{P}(t))}{\partial \zeta_i(t)}$$

Derivative of $\operatorname{Tr}(\mathcal{P}(t))$

8

Derivative of $Tr(\mathcal{P}(t))$

• $\Lambda(t)$: Fréchet derivative of $\mathcal{P}(t)$ with respect to $\overline{C}_{\zeta}\overline{C}_{\zeta}^*(t)^{-1}$

$$\Lambda h(t) = -\int_0^t S(t-s) \big((\Lambda h) \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^{\star} \mathcal{P} + \mathcal{P} \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^{\star} (\Lambda h) + \mathcal{P} h \mathcal{P} \big) (s) S^{\star}(t-s) \mathrm{d}s,$$

$$\Lambda(0) = 0,$$

where h(t) is a trace-class operator.

8

Derivative of $Tr(\mathcal{P}(t))$

• $\Lambda(t)$: Fréchet derivative of $\mathcal{P}(t)$ with respect to $\overline{C}_{\zeta}\overline{C}_{\zeta}^*(t)^{-1}$

$$\Lambda h(t) = -\int_0^t S(t-s) \big((\Lambda h) \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^* \mathcal{P} + \mathcal{P} \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^* (\Lambda h) + \mathcal{P} h \mathcal{P} \big) (s) S^*(t-s) \mathrm{d}s,$$

$$\Lambda(0) = 0,$$

where h(t) is a trace-class operator.

• Apply chain rule

$$\frac{\partial \operatorname{Tr}(\mathcal{P}(t))}{\partial \zeta_i(t)} = \operatorname{Tr}(\Lambda(t) \circ D_{\zeta_i(t)} \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^{\star}(t)),$$

 $D_{\zeta_i(t)}\overline{C}_{\zeta}\overline{C}_{\zeta}^*(t)$: Fréchet derivative of the operator $\overline{C}_{\zeta}\overline{C}_{\zeta}^*(t)$ with respect to the location of sensor *i*.

Derivative of $Tr(\mathcal{P}(t))$

• $\Lambda(t)$: Fréchet derivative of $\mathcal{P}(t)$ with respect to $\overline{C}_{\zeta}\overline{C}_{\zeta}^*(t)^{-1}$

$$\Lambda h(t) = -\int_0^t S(t-s) \big((\Lambda h) \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^* \mathcal{P} + \mathcal{P} \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^* (\Lambda h) + \mathcal{P} h \mathcal{P} \big) (s) S^*(t-s) \mathrm{d}s,$$

$$\Lambda(0) = 0,$$

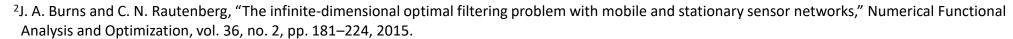
where h(t) is a trace-class operator.

• Apply chain rule

$$\frac{\partial \operatorname{Tr}(\mathcal{P}(t))}{\partial \zeta_i(t)} = \operatorname{Tr}(\Lambda(t) \circ D_{\zeta_i(t)} \bar{\mathcal{C}}_{\zeta} \bar{\mathcal{C}}_{\zeta}^{\star}(t)),$$

 $D_{\zeta_i(t)}\bar{\mathcal{C}}_{\zeta}\bar{\mathcal{C}}^*_{\zeta}(t)$: Fréchet derivative of the operator $\bar{\mathcal{C}}_{\zeta}\bar{\mathcal{C}}^*_{\zeta}(t)$ with respect to the location of sensor *i*.

Galerkin approximation with orthonormal sinusoidal basis functions



- Two import parameters in the problem formulation:
 - Sensor noise covariance R: smaller value means better performance
 - Mobility penalty γ : smaller value yields swifter vehicle
- Two cost components Uncertainty cost: $\int_{0}^{t_{f}} \operatorname{Tr}(\mathcal{P}(t)) dt$

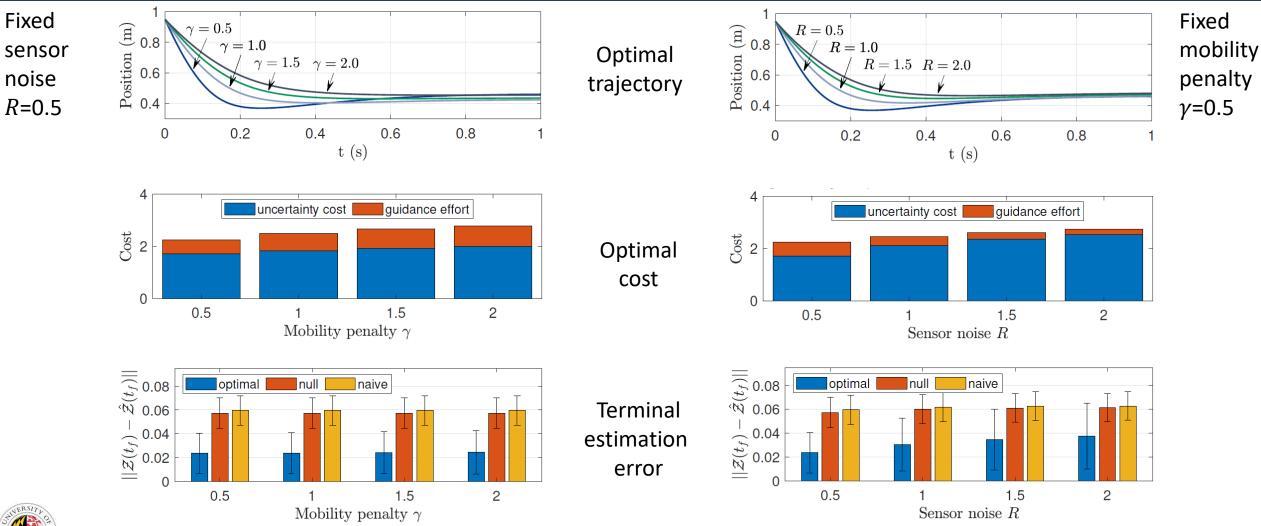
• Guidance effort:
$$\frac{1}{2} \int_0^{t_f} p^T(t) \gamma p(t) dt$$

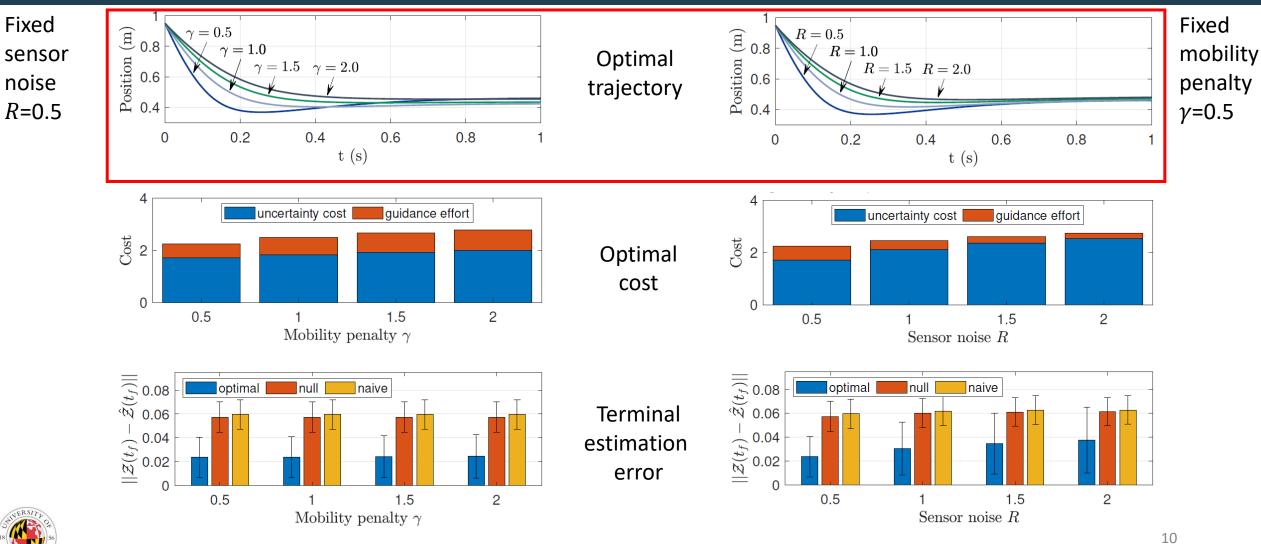
• Guidance in comparison in Monte Carlo simulation:

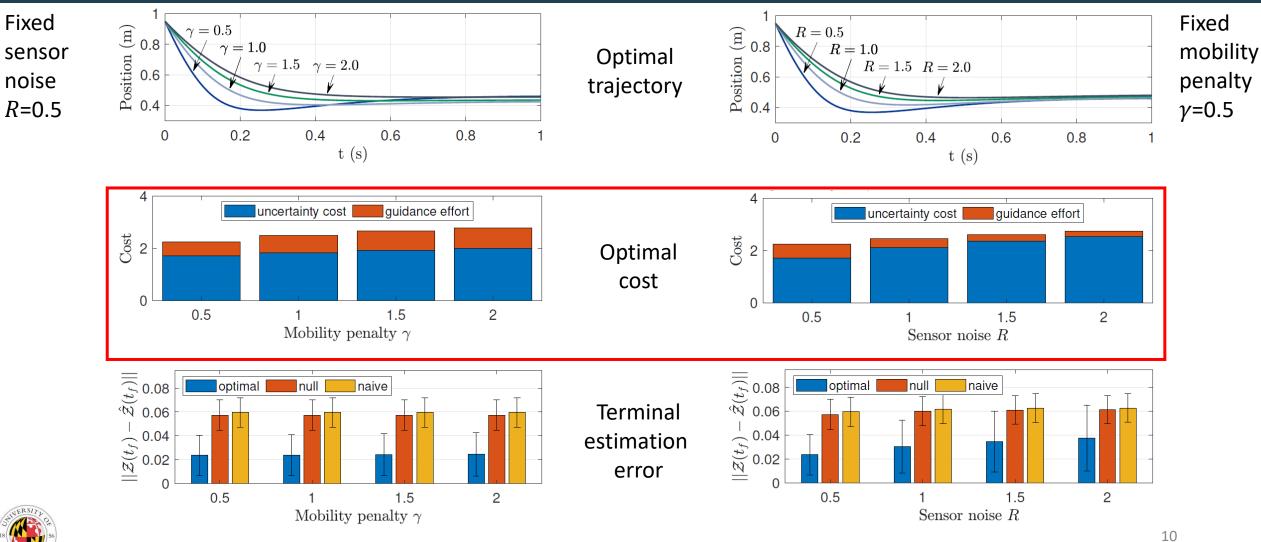
Guidance	Trajectory
Optimal	Optimal trajectory steered by numerically computed optimal guidance
Naive	Trigonometrically traversing the domain
Null	Staying at initial location

Formulation and solution method

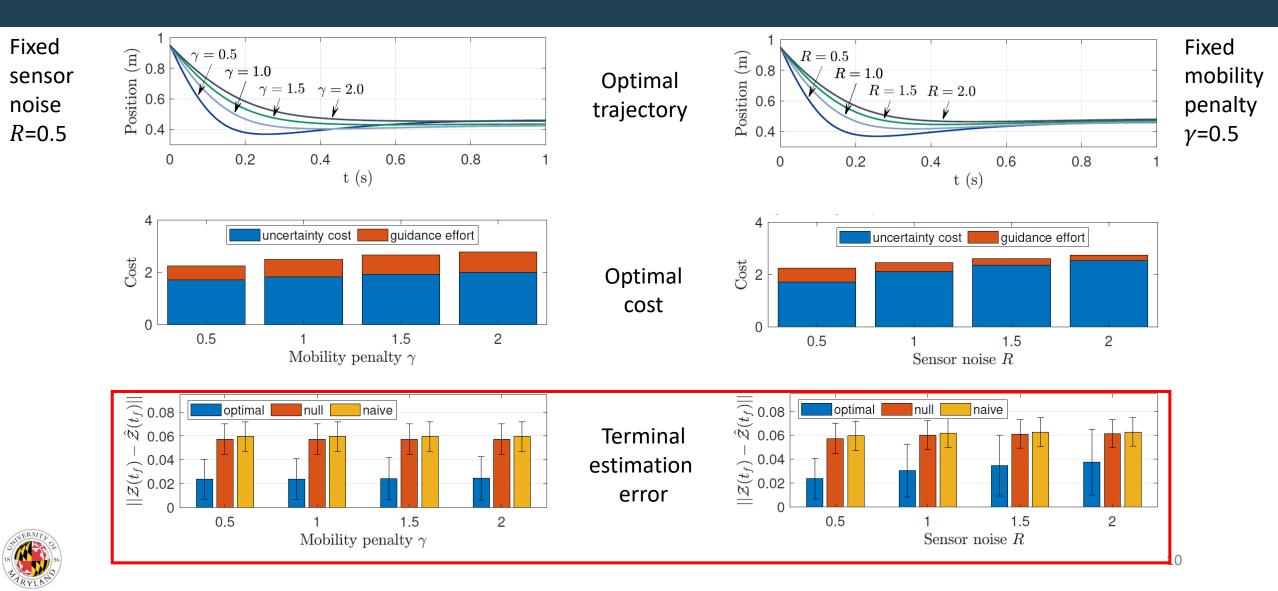
mmary







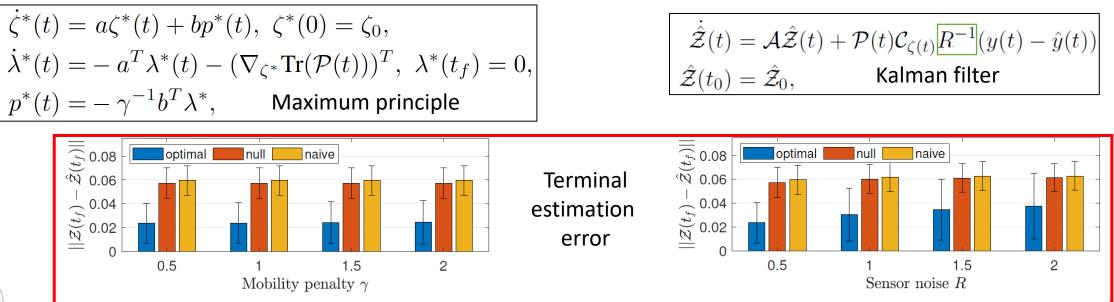
Summary



Fixed	Fixed
sensor	mobility
noise	penalty
<i>R</i> =0.5	γ=0.5

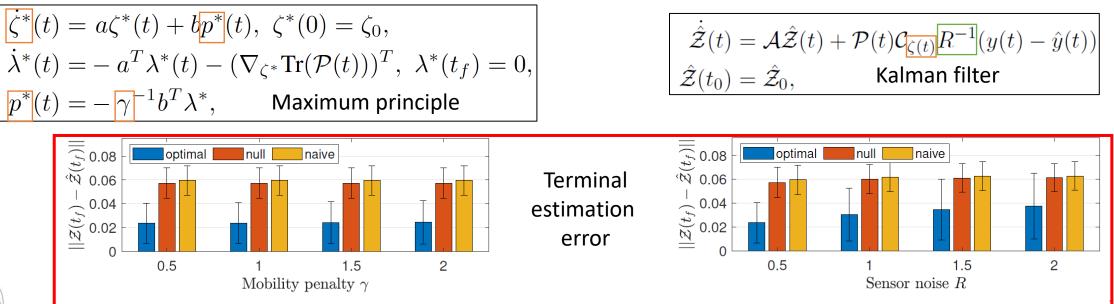
$\begin{split} \dot{\zeta}^*(t) &= a\zeta^*(t) + bp^*(t), \ \zeta^*(0) = \zeta_0, \\ \dot{\lambda}^*(t) &= -a^T\lambda^*(t) - (\nabla_{\zeta^*}\mathrm{Tr}(\mathcal{P}(t)))^T, \ \lambda^*(t_f) = 0, \\ p^*(t) &= -\gamma^{-1}b^T\lambda^*, \text{Maximum principle} \end{split}$	$ \begin{aligned} \dot{\hat{\mathcal{Z}}}(t) &= \mathcal{A}\hat{\mathcal{Z}}(t) + \mathcal{P}(t)\mathcal{C}_{\zeta(t)}R^{-1}(y(t) - \hat{y}(t)) \\ \hat{\mathcal{Z}}(t_0) &= \hat{\mathcal{Z}}_0, \end{aligned} $ Kalman filter
$ \begin{array}{c} \hline \\ (t) \\ $	(t) = 0.08

Fixed	Fixed
sensor	mobility
noise	penalty
<i>R</i> =0.5	γ=0.5



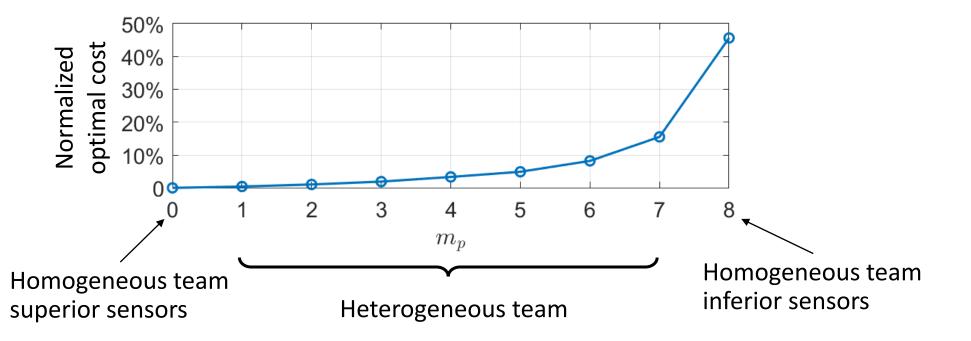
A RYLAND

Fixed	Fixed
sensor	mobility
noise	penalty
<i>R</i> =0.5	γ=0.5



Simulation: Heterogeneous team

- Assume a larger investment is required for a superior sensor (R = 0.5) and $\gamma = 0.5$) than for an inferior sensor (R = 2 and $\gamma = 1$).
- Heterogeneous team: m_p inferior sensors + $(8 m_p)$ superior sensors.



Summary and ongoing work

- Estimation of a diffusion process using a team of mobile sensors under optimal guidance
- Ongoing work
 - Extend the framework to a diffusion-advection process with 2D spatial domain
 - More efficient numerical computation
 - Convergence of the approximate optimal solution*.
 - Simultaneous estimation and control with a team of mobile sensor-plusactuators.

*S. Cheng and D. A. Paley, "Optimal control of a 2D diffusion-advection process with a team of mobile actuators under jointly optimal guidance," submitted.

Thank you!

This work is supported by a seed grant from Northrop Grumman.

Sheng Cheng cheng@terpmail.umd.edu

