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• Autonomous vehicles: monitoring and control of large-scale 
spatiotemporal processes.

• Modelling of the process: partial differential equations 
• e.g., advection-diffusion
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Sensor type Representative work Approach 

Stationary 

[Smyshlyaev and Krstic, 2005] Backstepping

Boundary [Wang et al., 2017] Luenberger

[Moura and Fathy, 2017] LQE

[Bensoussan, 1972] Minimum trace 

In-domain [Demetriou and Borggaard, 2004] Enhanced observability 

[Demetriou, 2017] Centroidal Voronoi tessellation 

[Veldman et al., 2020] Geometric rules 

Mobile 

[Demetriou and Hussein, 2009] Lyapunov-based methods 

[Demetriou et al, 2011] Lyapunov-based methods

[Demetriou, 2018] Lyapunov-based methods

[Demetriou, 2014] Gradient-based methods 

[Carotenuto et al., 1987] Optimization

[Demetriou, 2016] Optimization

Relation to prior work
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Our contributions to date:

1. Formulate an optimization problem: uncertainty + mobility penalty

2. Establish the conditions of the existence of a solution to the proposed 
problem

3. Analyze the sensor noise and mobility penalty’s impact on the 
performance of the proposed guidance

Introduction Formulation and solution method Summary



• Assume linear and first-order dynamics of the mobile sensors

position guidance

4

Sensor dynamics and diffusion process
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• Consider a 1D diffusion equation with unknown initial condition and 
known boundary condition:

• Assume linear and first-order dynamics of the mobile sensors

position guidance

Gaussian 
white noise

4

Sensor dynamics and diffusion process
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• Abstract linear system representation:
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Infinite-dimensional system: Kalman filter
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• Kalman filter1

• Abstract linear system representation:

covariance of 
measurement noise
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Infinite-dimensional system: Kalman filter
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1 S. Omatu and J. H. Seinfeld, Distributed parameter systems: theory and applications. Clarendon Press, 1989



• Kalman filter1

• Abstract linear system representation:

with operator-valued differential Riccati equation:

covariance of 
measurement noise

incremental covariance 
of state noise
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Infinite-dimensional system: Kalman filter
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1 S. Omatu and J. H. Seinfeld, Distributed parameter systems: theory and applications. Clarendon Press, 1989
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Problem formulation
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• Uncertainty evaluated by the trace of the covariance operator1
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Problem formulation
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1M. Zhang and K. Morris, “Sensor choice for minimum error variance estimation,” IEEE Trans. Automatic Control, vol. 63, no. 2, pp. 315– 330, 2018.



• Uncertainty evaluated by the trace of the covariance operator1

where 𝛾 weights the guidance effort.
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Problem formulation
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• Uncertainty evaluated by the trace of the covariance operator1

where 𝛾 weights the guidance effort.

• Existence of a solution is established when the kernel of the 
observation function              is continuous w.r.t. sensor location2.
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Problem formulation
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1M. Zhang and K. Morris, “Sensor choice for minimum error variance estimation,” IEEE Trans. Automatic Control, vol. 63, no. 2, pp. 315– 330, 2018.

• Find an optimal sensor guidance 𝑝 to solve

2J. A. Burns and C. N. Rautenberg, “The infinite-dimensional optimal filtering problem with mobile and stationary sensor networks,” Numerical Functional Analysis
and Optimization, vol. 36, no. 2, pp. 181–224, 2015.



Consider the Hamiltonian:

Optimality conditions:

where
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Pontryagin’s maximum principle
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Consider the Hamiltonian:

Optimality conditions:

where
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Pontryagin’s maximum principle
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Derivative of Tr(𝒫 𝑡 )
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• Λ(𝑡): Fréchet derivative of 𝒫(𝑡) with respect to ҧ𝒞𝜁 ҧ𝒞𝜁
∗ 𝑡 1

where ℎ(𝑡) is a trace-class operator. 
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Derivative of Tr(𝒫 𝑡 )
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• Λ(𝑡): Fréchet derivative of 𝒫(𝑡) with respect to ҧ𝒞𝜁 ҧ𝒞𝜁
∗ 𝑡 1

where ℎ(𝑡) is a trace-class operator. 

𝐷𝜁𝑖(𝑡)
ҧ𝒞𝜁 ҧ𝒞𝜁

∗(𝑡): Fréchet derivative of the operator ҧ𝒞𝜁 ҧ𝒞𝜁
∗(𝑡) with respect 

to the location of sensor 𝑖. 
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• Apply chain rule



• Λ(𝑡): Fréchet derivative of 𝒫(𝑡) with respect to ҧ𝒞𝜁 ҧ𝒞𝜁
∗ 𝑡 1

where ℎ(𝑡) is a trace-class operator. 

𝐷𝜁𝑖(𝑡)
ҧ𝒞𝜁 ҧ𝒞𝜁

∗(𝑡): Fréchet derivative of the operator ҧ𝒞𝜁 ҧ𝒞𝜁
∗(𝑡) with respect 

to the location of sensor 𝑖. 

8

Derivative of Tr(𝒫 𝑡 )

Sheng Cheng and Derek A. Paley Conference on Decision and ControlIntroduction Formulation and solution method Summary

2J. A. Burns and C. N. Rautenberg, “The infinite-dimensional optimal filtering problem with mobile and stationary sensor networks,” Numerical Functional 
Analysis and Optimization, vol. 36, no. 2, pp. 181–224, 2015.

• Galerkin approximation with orthonormal sinusoidal basis functions

• Apply chain rule



• Two import parameters in the problem formulation:
• Sensor noise covariance 𝑅: smaller value means better performance

• Mobility penalty 𝛾: smaller value yields swifter vehicle

• Two cost components
• Uncertainty cost:

• Guidance effort:

• Guidance in comparison in Monte Carlo simulation:
Guidance Trajectory

Optimal Optimal trajectory steered by numerically computed optimal guidance

Naive Trigonometrically traversing the domain

Null Staying at initial location
9

Simulation: single sensor
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Simulation: single sensor
Fixed 
sensor 
noise 
𝑅=0.5

Fixed 
mobility 
penalty 
𝛾=0.5

Introduction Formulation and solution method Summary
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• Assume a larger investment is required for a superior sensor (𝑅 = 0.5
and 𝛾 = 0.5) than for an inferior sensor (𝑅 = 2 and 𝛾 = 1).

• Heterogeneous team: 𝑚𝑝 inferior sensors + (8 − 𝑚𝑝) superior sensors. 
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Homogeneous team
inferior sensors
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Simulation: Heterogeneous team
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Summary and ongoing work
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• Estimation of a diffusion process using a team of mobile sensors 
under optimal guidance

• Ongoing work
• Extend the framework to a diffusion-advection process with 2D spatial 

domain

• More efficient numerical computation

• Convergence of the approximate optimal solution*. 

• Simultaneous estimation and control with a team of mobile sensor-plus-
actuators.

12

Introduction Formulation and solution method Summary

*S. Cheng and D. A. Paley, “Optimal control of a 2D diffusion-advection process with a team of mobile actuators under jointly optimal guidance,” submitted.
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